IDIOSYNCRATIC VOLATILITY AS AN EXPLANATION OF THE SMALL FIRM EFFECT: AUSTRALIAN EVIDENCE

Michael Dempsey*

Abstract

In the context of Australian stockmarkets, we examine how a company’s size and stock idiosyncratic volatility relate to return performance. The paper’s main conclusions may be summarized as follows. The stocks of the smallest firms markedly outperform the largest capitalized stocks, and for such small capitalized stocks, those with greater idiosyncratic volatility have markedly superior returns. It appears that the relationship of higher returns with higher idiosyncratic volatility is consistent with the mathematics of idiosyncratic volatility. In which case, the small size effect may also be interpreted as the mathematical outcome of idiosyncratic volatility. The paper further examines the condition on which the higher returns reported for either small firm size or high idiosyncratic volatility are likely to be wealth-forming. Finally, we observe that the high performances of the stocks of the smallest firms are likely irrelevant to the class of firms that are of interest to the institutional investor.

Keywords: Idiosyncratic Volatility, Size Effect
JEL Classification: G10, G12, G15

* Department of Accounting and Finance, Faculty of Business and Economics, Monash University, Victoria, Melbourne, Australia,
P.O. Box 197, VIC 3145 Australia
Tel: 61 3 9903 4543
Fax: 61 3 9905 5475
Email: Michael.Dempsey@monash.edu

I am indebted to Bernie Bollen for his kind assistance with the data analysis.
I gratefully acknowledges financial support from the Melbourne Centre for Financial Studies (Cost Centre 807005 and 1779270).

Introduction

In separating the influences of market capitalization and idiosyncratic volatility in U.S. markets, Spiegel and Wang (2005) find that companies with high idiosyncratic volatility tend to be of small firm size, and, since stock returns are decreasing with firm size, stock returns are also increasing with idiosyncratic volatility. They conclude that while both these variables appear to bear a systematic relationship with a stock's returns, the relationship of returns with idiosyncratic volatility subsumes the relationship with firm size. Malkiel and Xu (1997, 2006) have also highlighted the intriguing possibility that the small firm size effect might actually be an idiosyncratic volatility effect. Against this, however, authors such as Ang et al. (2006, 2008) have reported that they find a negative relationship between returns and idiosyncratic volatility.

In this paper, we examine the relationship of stock returns with firm size and idiosyncratic volatility in the context of the Australian (ASX) stockmarket. The Australian stockmarket by virtue of its distinctive characteristics provides opportunities for realistic robustness tests in regard to asset pricing in other markets. The market is much smaller than U.S. markets (the 200th company is capitalized at approximately $150 US million at the time of writing) as well as being highly concentrated with around 2,000 listed companies, which are confined to a relatively small number of industries, most specifically, financials and materials dominated by mining and resource stocks (Ghrghori, Chan and Faff, 2006, provide a more extended overview of the Australian market’s distinctive characteristics).

Our paper’s main conclusions may be summarized as follows. Portfolios of the smallest capitalized stocks markedly outperform portfolios of the largest capitalized stocks, and for such small capitalized stocks, portfolios with greater idiosyncratic volatility generate markedly superior returns on an equally-weighted basis. Notwithstanding, for very large companies, higher idiosyncratic volatilities appear to identify decidedly lower returns. Our findings thereby provide a link with prior findings in the literature that have identified a more pronounced negative relationship of returns with idiosyncratic volatility for large companies (Ang et al., 2008; Bali and Cakici, 2008), as well as with reports in the literature of both a positive and a negative association between returns and idiosyncratic volatility (as discussed below). We show additionally how the high returns identified with high idiosyncratic volatility might be attributable to the mathematics of averaging returns that are distributed with a degree of log-symmetry. In which case, we are observing “returns created by volatility.” We observe, further, that when the idiosyncratic volatility
is the outcome of “fundamental” growth and decline, the
returns created by idiosyncratic volatility are wealth-
creating (as advocated by Dempsey, 2002); whereas
when the idiosyncratic volatility is due to “noise” the
process is not of itself wealth-creating (as advocated by
Arnott, Hsu and Moore, 2005). Our observations thereby
allow for an interpretation of Arnott et al.’s principle of
“fundamental indexation” in terms of idiosyncratic
volatility. Finally, we conclude that the higher returns for
smaller firms – which are indeed dramatic at the lower
end of firm size – are almost certainly irrelevant to the
class of firms that are of interest to the institutional
investor.

The portfolio analysis as adopted here calculates
stock returns across compartmentalized ranges of firm
size and idiosyncratic volatility. By sorting on portfolios
the noise of individual stock returns created by
nonsynchronous trading and measurement error is
reduced (Vaihekoski, 2004). The portfolio approach is
therefore simple and robust. It is the method advocated
by the late Fischer Black (Black, 1993; Mehrling, 2005,
see p. 112). Although it lacks statistical tests – as
compared with, for example, the Fama and Macbeth
(1973)/Fama and French (1992) method - Black’s
argument was that the method simulates the portfolios
that investors might actually use, and rather than
providing a “once-off” analysis, the method tends to give
guidance as to where to look for the next most promising
teoretical enhancements. And unlike linear regression
tests, the portfolio method does not assume any specific
functional form for the relations among the variables.

The rest of the paper is arranged as follows. Section
2 presents prior literature while Section 3 describes the
data and the methodology employed in this paper. In
section 4 we discuss the results and section 5 concludes
the paper.

Background

With confirmation of the Fama and French three-factor
model, a consideration of a company’s market
capitalization or firm size effect has become almost
standard practice. Nevertheless, the evidence is not all
one-sided. Banz (1981), for example, documents the size
effect over a 45-year period for U.S. stocks and finds that
while the effect is pronounced in the smallest firms there
is no clear linear relationship between firm size and
that the size effect is no longer prevalent in U.S. stocks.
In the Australia market, Beedles, Dodd and Officer
(1988) find that the size effect is prevalent and is robust
to several methodological adjustments. They find
evidence that transaction costs can explain a part of the
size anomaly but that they do not appear to be the
dominant factor. Other studies, however, find little or no
evidence of the firm size effect in Australian markets.

Brown, Kleidon and Marsh (1983) find that although the
size anomaly exists, it is nevertheless not stable through
time and that estimates of the size effect are subject to
the historical time studied. Consistent with the findings of
Banz in the U.S., they find that the relationship between
firm size and returns is located in the smallest stocks.

Chan and Faff (2003) report a flat regression relationship
between returns and market capitalization for Australian
stocks, and Gaunt (2004) finds no clear evidence of the
firm size effect in Australian markets.

Malkiel and Xu (1997) show a high negative
correlation between a company’s size and its
idiosyncratic volatility and suggest that idiosyncratic risk
might explain the size effect. They consider that
idiosyncratic risk is rationally priced if portfolio
managers must justify (to clients) the performance of
individual stocks within their portfolios, while Malkiel
and Xu (2006) provide a formal model consistent with
idiosyncratic risk being priced when investors (either
voluntarily or non-voluntarily) are incompletely
diversified. Similar to the approach adopted in the preset
paper, Malkiel and Xu (1997) divide stocks into
portfolios based on their idiosyncratic volatility and
report their average return over the period 1963-1994.
The results show a clear trend for stocks with higher
idiosyncratic risk to generate higher returns. Goyal and
Santa-Clar (2003) also find that equally-weighted
average stock volatility is positively related to the value-
weighted market returns.

Ang, Hodrick, Xing and Zhang (AHXZ) (2006,
2008), however, dispute the validity of these results and
report that stocks with higher idiosyncratic volatility
(calculated on one month of daily data) in relation to the
three-factor Fama and French (1993) model have
decidedly lower equally-weighted returns. AHXZ (2006)
report that for U.S. stocks, the average return differential
between the lowest and highest quintile portfolios formed
on one-month lagged idiosyncratic volatilities is about
1.06% per month for the period 1963-2000; while
AHXZ (2008) present evidence that the negative relation
between idiosyncratic volatility and average returns is
strongly significant for each of their largest seven equity
markets (Canada, France, Germany, Italy, Japan, the
U.S., and the U.K.), and is also observed in the larger
sample of 23 developed markets, averaging 1.31% per
month between the highest and lowest quintiles formed
on idiosyncratic volatility. They report also that the
negative volatility effect is more pronounced for larger
companies than it is for very small firms.

Similarly to AHXZ (2006, 2008), Bali and Cakici
(2008) use within-month daily data to calculate
idiosyncratic volatility in relation to the three-factor
Fama-French (1993) model, and find no robust
significant relation between idiosyncratic volatility and
equally-weighted expected returns. However, the value-
weighted average return differential between the lowest
and highest idiosyncratic volatility portfolios is about
0.93% per month and highly significant for the extended
sample period of July 1963–December 2004. This
result is very similar to the finding of AHXZ for equally-
weighted returns (−1.06% per month) reported above.
The pattern observed in their quintile portfolios is not
monotonic however: average returns actually increase
from quintile 1 (low idiosyncratic risk quintile) to quintile
3 and then average returns decline, so that quintile 5
experiences a substantial decrease in average returns. It
is noteworthy that quintile 5 which contains 20% of
stocks sorted by highest idiosyncratic volatility contains
only 2% of the market, while quintile 1 (which contains 20% of stocks sorted by lowest idiosyncratic volatility) contains 54% of the market. This is consistent with a strong negative correlation between the firm’s market capitalization (size) and idiosyncratic volatility.

Malkiel and Xu (2006) suggest that the AHXZ (2006) findings may be due to an errors in the variables problem when fitting their model to the short data sample; while Huang, Liu, Rhee, and Zhang (2007) argue that AHXZ’s results are driven by monthly stock return reversals. After controlling for the difference in the past-month returns, Huang et al. show that the negative relation between average return and the lagged idiosyncratic volatility disappears. Fu (2008) points to a similar conclusion. He shows that idiosyncratic risk varies substantially over time and suggests that idiosyncratic volatility calculated from a single month fails to identify the expectation of idiosyncratic volatility in the subsequent month. Using rolling monthly data, Fu provides in-sample estimates of the conditional idiosyncratic variance of stock returns based on an EGARCH model and finds a significantly positive relation between stock return and idiosyncratic volatility.

Following an approach similar to Fu’s (2008) EGARCH method, Brockman and Schutte (2007) estimate conditional idiosyncratic volatility and confirm that the relation between stock return and idiosyncratic volatility is positive in international data. Similarly Spiegel and Wang (2006) and Eiling (2006) adopt the EGARCH models to estimate conditional idiosyncratic volatility. Both find a positive relation stock return and idiosyncratic volatility in U.S. data. Spiegel and Wang also report that idiosyncratic volatility dominates liquidity in explaining the cross-sectional variation of average returns.

Thus we note that a degree of controversy surrounds even the direction of any idiosyncratic volatility effect for stock returns. A possible solution to the impasse is that, on the one hand, stocks are priced with the expectation that in the long run idiosyncratic volatility is rewarded, but that on the other hand, unexpected increases in stock idiosyncratic volatility of themselves presage uncertainty and subsequent falls. Supporting such conjecture, Eun and Huang (2005) find a similar result to Fu for Chinese stocks using a 24-month rolling window. However, in their updated study Eun and Huang (2007) cross over to measuring risk using daily returns for the month preceding the return calculation (as AHXZ), on which basis, they report the opposite conclusion to their earlier one, namely that of a negative relation between return performance and idiosyncratic volatility, as consistent with AHXZ.

In studies that combine the small firm size and idiosyncratic volatility effects, Bali et al. (2005) have contended that the findings of Goyal and Santa-Clara (2003) showing a relationship between market returns and prior-month levels of idiosyncratic volatility are driven largely by stocks of small firms. Consistently, Angelidis and Tessaromatis (2005) report that it is the idiosyncratic volatility of stocks of small firms that is associated with the small firm size effect. Again, Brown and Ferreira (2004) argue that it is the idiosyncratic volatilities of small firms that are significant positive predictors of stock returns.

Data, Definitions and Methodology

A. Data

We obtain the data for this study from two sources. The Australian Graduate School of Management (AGSM) equities database was used to calculate monthly returns. The Securities Industry Research Centre of Asia-Pacific (SIRCA) database, which includes daily returns for Australian equities from 1980 through 2004, was matched with the AGSM database, and used to calculate idiosyncratic volatility.

In order to be included in the sample for a given month, a stock must have been traded in 35 of the previous 60 months (to calculate the stock’s beta and idiosyncratic volatility for that month). Our final sample included 190,218 monthly observations of 2,347 companies. In any month, the number of companies ranged from just less than 200 to more than 1,000. Company sizes ranged from $30,000 to $46 billion (with an average capitalization size of approximately $400 million). In the two-dimensional sorts, the minimum number of observations assigned to any portfolio was 270.

B. Definitions

The variables market capitalization and idiosyncratic variance are defined as follows.

Market capitalization (company size) (MCi,t):

The market capitalization of stock i for month t (MC i,t) is measured as the number of company i’s shares outstanding multiplied by the share price at the end of month t.

Idiosyncratic variance (volatility) (IVi,t):

We consider a market pricing model consistent with the CAPM as:

\[r_{i,t} = \alpha_i + \beta_i \left(r_{M,t} \right) + e_{i,t} \]

(1)

where at each time t, \(r_{i,t} \) is the excess return on stock i, \(\beta_i \) is the beta of stock i, \(r_{M,t} \) is the excess return on the total market of assets, \(\alpha_i \) is the intercept term, and \(e_{i,t} \) are the error terms. For each stock i, beta (\(\beta_i \)) in each month t is calculated from the previous 60 months of historical data as:

\[\beta_i,t = \frac{\text{Cov}(r_{i,m}, r_{M,m})}{\text{Var}(r_{M,m})} \]

(2)

where \(r_{i,m} \) and \(r_{M,m} \) are, respectively, the returns for stock i and the market index M in months m = t-59 to month t. If a security did not trade for at least 35 of the previous 60 months, it is not included in month t’s calculation. We estimate the total return variance for
Stocks are ranked on their market capitalization (MC) in C. Methodology number of stocks in each portfolio. Additionally, we form a set of 100 (10x10) portfolios to identify the pattern of returns on one variable while across pairs of the variables MC and IV, which allow us idiosyncratic variance (IV) is a sort on the other variable. It is warranted. In double sorts on two variables holding another variable constant. The problem here is the high correlation of our explanatory variables, which implies that a sort on the first variable will also effectively be a sort on the second variable, with only a very limited range of portfolio-averaged values for portfolios formed on the second variable. For this reason, we adopt the approach of forming portfolios on the maximum spread of the values of the second variable free of the restriction that each portfolio must have an equal number of stocks. Thus, we create 10x10 sorts for each pair of variables by referencing each stock to each of its decile portfolios. For example, a stock that appears in the decile 1 portfolio for the IV variable and decile 1 portfolio for the MC variable appears in the percentile portfolio (1, 1), while a stock that appears in decile portfolio 1 for the IV variable and decile 2 portfolio for the MC variable appears in the percentile portfolio (1, 2), and so on.

Analysis of Results

A) Single Sort Portfolios

Figures 1 and 2 plot the returns of portfolios constructed, respectively, on the variables of market capitalization (MC) and monthly idiosyncratic variance (IV). The relationships are plotted for equally-weighted (EW) and value-weighted (VW) returns over portfolio stocks. The corresponding values are tabulated as panels A–B of Table 1 along with the average values of idiosyncratic variance for each of the market capitalization portfolios in Panel A, and the average values of market capitalization for each of the idiosyncratic variance portfolios in Panel B. We note that the portfolios formed on increasing market capitalization are monotonically decreasing in idiosyncratic variance (Panel A) and the portfolios formed on increasing idiosyncratic variance are monotonically decreasing in market capitalization (Panel B). Our additional observations on the two relations are as follows.

(i) Portfolio Returns versus Market Capitalization (Figure 1)

In the relationship between portfolio returns and market capitalization shown in Figure 1 (equally-weighted and value-weighted returns are essentially identical for portfolios 2-10), we observe that the relationship is declining with market capitalization. Thus the graph appears to be broadly consistent with the relationship that Spiegel and Wang (2006) report for non-Australian stocks. We note, however, that this inverse relationship holds only for firms with quite low market capitalizations. We also note that Chan and Faff (2003) report a flat regression between returns and market capitalization for Australian stocks. It is possible that stocks driving the return performance of our portfolios 1 and 2 have been suppressed in Chan and Faff’s linear regression analysis. Our findings, however, are consistent with Banz (1981) for the U.S. and Gaunt (2004), Brown et al. (1983) and Beedles et al. (1988) for Australia, who find that the size effect holds only for their smallest stocks.

(ii) Portfolio Returns versus Idiosyncratic Variance (Figure 2)

Figure 2 displays the relationship between portfolio returns and idiosyncratic variance. The relationship between both equally-weighted and value-weighted returns contradict each other. The equally-weighted returns are monotonically increasing (with the exception of portfolio 10) which is consistent with the findings of such as Malkiel and Xu (1997, 2006) and Fu (2008). The downward direction of the value-weighted portfolio returns from portfolio 4 onwards is precipitous. Clearly, larger capitalized stocks with higher idiosyncratic
variance are somehow associated with declining returns. A possible explanation is that increases in variance for stocks of larger companies indicate apprehension and auger declines. Notwithstanding, our results are consistent with the observations of both AHXZ (2008) and Bali and Cakici (2008), who, as noted above, report that the stocks of large companies are particularly sensitive to their observed negative relationship between average returns and idiosyncratic volatility. Intriguingly, therefore, our findings cross over between previous findings in the literature of both a positive and negative correlation of idiosyncratic volatility with average stock returns.

B) Double Sort Portfolios

Pairwise sorts of variables allow the explanatory power of one variable to be examined while controlling for the explanatory power of a second variable. Figure 3 again shows the superior performances of low-capitalized stocks (as Figure 1). The graph reveals a clear relationship between returns and idiosyncratic variance for stocks of small companies that is consistent with the trend for equally-weighted portfolios in Figure 2. We note that the largest companies with high idiosyncratic variance in Figure 3 (portfolio (10,10)) have markedly negative returns (which is consistent with Figure 2 where value-weighted portfolio returns decrease with idiosyncratic variance).

Figure 3 reveals that stocks of small market capitalization with high idiosyncratic volatility provide remarkably high average returns. Although this appears as something of a phenomenon, it is possible to interpret the returns as the mathematical outcome of averaging over highly divergent returns that are bounded below by a zero return. To see this, allow for the moment that stock prices are distributed log-normally. Log-normality of returns implies:

\[P_{i,1} = P_{i,0} \exp[\mu + Z_1\sigma_i] \] \hspace{1cm} (6)

where \(P_{i,1} \) is stochastic outcome price of stock \(i \) at the end of the period, \(P_{i,0} \) is price of the stock at the commencement of the period, and \(\mu \) and \(\sigma_i \) are, respectively, the mean drift rate and standard deviation of the continuously compounding growth rate for the stock, and \(Z_1 \) is the unit normally-distributed variable. If for the moment also we take it that the drift continuously compounding growth rate (\(\mu \)) is zero, the symmetry about zero of the unit normal \(Z \) function in equation 6 implies that the outcomes \(P_0 \exp(x) \) and \(P_0 \exp(-x) \) are equally likely for any \(x \). So, for example, setting \(x = 69.3\% \) per period, we have the outcomes \(P_0 \exp(0.693) = P_0 \times 2 \) (a doubling of investment value), and \(P_0 \exp(-0.693) = P_0 \times 0.5 \) (a halving of investment value) as equally likely. And similarly, the outcomes \(P_0 \times N \) and \(P_0 \times 1/N \) are equally likely for any \(N \). The intuition is that no matter how negative the decline in a share price, the share price itself cannot become negative, whereas the upside is unbounded. To illustrate, we might imagine a portfolio of a large number of identical stocks of equal value which have zero drift and zero variance. The outcome portfolio return is clearly 0%. Now consider that such stocks are subjected to idiosyncratic volatility such that half the stocks double their value and half the stocks lose half their value. The outcome portfolio return is 25%. So we note that the idiosyncratic volatility, of itself, has created a return. More generally, when a large number of identical stocks are subjected to idiosyncratic volatility in accordance with equation 6, the outcome return, \(R \), is determined as:

\[R = \mu + \frac{1}{2} \sigma_i^2 = \mu + \frac{1}{2} IV_i \] \hspace{1cm} (7)

for example, Jacquier, Kane and Marcus (2003). The phenomenon of returns augmented by volatility is effective to the extent that continuously compounding returns are symmetrically distributed. The continuously-compounded returns in our sample are not normally distributed and are inclined to be negatively skewed. For this reason, equation 7 of itself will tend to overstate the relationship between idiosyncratic volatility and returns. Nevertheless, the average monthly idiosyncratic volatility for the decile portfolios in Panel B of Table 1 ranges between zero and 14.15%, indicating that if continuously compounding returns had in fact been normally distributed, the difference between the average returns for the lowest and highest idiosyncratic-ranked decile portfolios should be about \(\frac{1}{2} \times 14.15\% = 7.07\% \) per month. In fact, the difference is only \((2.51-0.98\%) = 1.65\% \) (Panel B of Table 1).

An important issue is the extent to which the higher recorded returns reported for small firms with high idiosyncratic volatility are likely to be wealth creating. Malkiel (2004), for example, has questioned whether econometrically determined excess returns associated with either the book-to-market equity ratio or firm size can be exploited to produce real money.

To respond, we consider that idiosyncratic volatility may be interpreted as the outcome of either one or both of two distinct price-formation processes. The first process is that stocks are liable to grow or decline fundamentally through time. In other words, at each point in time, each stock has an upside and a downside potential. In this case, the phenomenon of log-symmetric outcomes leads to a real wealth outcome, as we illustrate by stocks either doubling or halving in value through successive time periods in Figure 4. The process may be conceptualized in terms of two stocks of $100, one of which doubles to $200, and the other which halves to $50 over a period. The process generates a real return of 25% per period. This is the process advocated by Dempsey (2002).

The second process is that stocks are priced up and down as “noise,” so that over-valued stocks have downside potential and under-valued stocks have upside potential, as advocated by Arnott et al. (2005). In this case, no real return is generated. This is illustrated in Figure 5, which may be conceptualized in terms of a portfolio of stocks each with a true value of $100, but which with equal probability may double or half in price.
as noise. Such stocks may be represented as oscillating with a statistical distribution such that for each stock priced at $200 (true value $100), another stock is priced at $50 (true value $100), with two stocks priced at $100, one from a previous over-pricing of $200, and one from a previous under-pricing of $50, as depicted in Figure 5. As the stocks oscillate, a portfolio that invests in each of the representative stocks retains its value ($450 = $200 + 2 x $100 + $50). Consistently, the value-weighted return per period is calculated as zero ($50*100%+$100*100%+$200*-50%+$100*-50%)/$450 = 0%). However the equally-weighted portfolio return calculated each period is 25% [(100%+100%-50%-50%)/4]. The outcome that when idiosyncratic volatility is generated by noise, equally-weighted returns mathematically outperform value-weighted returns suggests the possibility of a noise explanation for the Bali and Cakici (2008) observation of a more negative association between idiosyncratic volatility and value-weighted returns as compared to the association between idiosyncratic volatility and equally-weighted returns. With idiosyncratic volatility generated by noise, realization of an actual return equal to the equally-weighted return (25% in Figure 5), requires that the investor is able to rebalance the portfolio as the same amount ($100) in each stock after each price change. This is the strategy of “fundamental indexation” advocated by Arnott et al. (2005).

Conclusion

Consistent with Fama and French (1996), we report that the average stock returns for the very smallest companies are dramatically higher than for larger companies. Such size effect, however, is in evidence only for stocks of companies of less than approximately $6 million market capitalization, which are well outside the company size range expected to be held by institutions. Our findings here are roughly consistent with previous Australian findings (by Gaunt, 2004; Brown et al., 1983 and Beedles et al., 1988). Consistent with such as Malkiel and Xu (1997, 2006) and Bali et al. (2005) we find that the returns of portfolios of stocks of small firm size are strongly and positively associated with their idiosyncratic volatility. This finding suggests that the higher returns of portfolios of stocks of small firm size may be the mathematical outcome of averaging over returns that are widely distributed (high idiosyncratic volatility) but which have a degree of symmetry as log-returns. Two interesting possibilities arise. The first, allowing that the idiosyncratic volatility is the outcome of re-valuations (as opposed to “noise”), is that idiosyncratic volatility – and thereby the small firm effect - implies a real wealth creation (consistent with Dempsey’s 2002 hypothesis, “risk creates its own reward”). The second possibility is that the observed idiosyncratic volatility – and thereby the small firm effect - represents “noise.” In this case, taking advantage of the noise requires a continuous re-indexing of a portfolio so as to avoid over investing in the over-valued stocks, consistent with “fundamental indexing” as advocated by Arnott et al. (2005). We conclude that the phenomenon of idiosyncratic volatility suggests an area for exciting research into the fundamental nature of stock price formation.

![Excess portfolio return](image1)

Figure 1. Average monthly returns and market capitalization

![Excess portfolio return](image2)

Figure 2. Average monthly returns and idiosyncratic volatility
Figure 3. Average monthly returns on market capitalization and idiosyncratic volatility

Figure 4. The outcome pattern of prices when a stock commences with a value of $100 and proceeds to either double or half its value each period as the outcome of fundamental growth or decline.
We calculate average monthly returns for portfolios formed on market capitalization (MC) and monthly idiosyncratic variance (IV). In each month, all stocks are ranked separately based on both market capitalization and idiosyncratic volatility. Both equally weighted (EW) and value-weighted (VW) average monthly returns are calculated for each portfolio. The portfolios are rebalanced monthly. The returns in the table are the average for each portfolio during the period. Panel A reports returns for portfolios formed on market capitalization. The average idiosyncratic volatility for each portfolio is tabulated in the final row. Panel B reports returns for portfolios formed on idiosyncratic volatility. The average market capitalization for each portfolio is tabulated in the final row.

Table 1: Average Monthly Returns of Portfolios Formed on Market Capitalization and Idiosyncratic Variance

<table>
<thead>
<tr>
<th>Panel A: Portfolios Formed on Market Capitalization (as Figure 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average MC(m)</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>EW Return</td>
</tr>
<tr>
<td>VW Return</td>
</tr>
<tr>
<td>Average IV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Portfolios Formed on Idiosyncratic Variance (as Figure 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average IV</td>
</tr>
<tr>
<td>EW Return</td>
</tr>
<tr>
<td>VW Return</td>
</tr>
<tr>
<td>Average MC(m)</td>
</tr>
</tbody>
</table>
Table 2: Average Monthly Returns of Portfolios Formed on a Two-Dimensional Sort on Market Capitalization and Idiosyncratic Variance

<table>
<thead>
<tr>
<th>Average monthly returns for portfolios formed on market capitalization and idiosyncratic variance</th>
<th>MC 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>MC 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV 1</td>
<td>2.29%</td>
<td>-1.80%</td>
<td>2.50%</td>
<td>-1.97%</td>
<td>-1.18%</td>
<td>-1.73%</td>
<td>-0.79%</td>
<td>-0.64%</td>
<td>-0.22%</td>
<td>-0.17%</td>
</tr>
<tr>
<td>IV 1</td>
<td>1.85%</td>
<td>0.50%</td>
<td>1.79%</td>
<td>0.88%</td>
<td>0.93%</td>
<td>0.73%</td>
<td>1.02%</td>
<td>0.84%</td>
<td>1.01%</td>
<td>0.94%</td>
</tr>
<tr>
<td>IV 1</td>
<td>3.23%</td>
<td>1.92%</td>
<td>1.38%</td>
<td>0.87%</td>
<td>0.86%</td>
<td>1.43%</td>
<td>0.98%</td>
<td>1.18%</td>
<td>1.14%</td>
<td>0.78%</td>
</tr>
<tr>
<td>IV 1</td>
<td>2.72%</td>
<td>1.25%</td>
<td>1.98%</td>
<td>0.82%</td>
<td>1.30%</td>
<td>0.91%</td>
<td>1.01%</td>
<td>1.08%</td>
<td>0.84%</td>
<td>0.46%</td>
</tr>
<tr>
<td>IV 1</td>
<td>3.85%</td>
<td>2.58%</td>
<td>1.05%</td>
<td>1.01%</td>
<td>1.02%</td>
<td>0.58%</td>
<td>1.12%</td>
<td>0.80%</td>
<td>1.16%</td>
<td>1.04%</td>
</tr>
<tr>
<td>IV 1</td>
<td>5.08%</td>
<td>2.56%</td>
<td>0.98%</td>
<td>0.56%</td>
<td>0.85%</td>
<td>-0.06%</td>
<td>1.47%</td>
<td>0.53%</td>
<td>1.03%</td>
<td>1.55%</td>
</tr>
<tr>
<td>IV 1</td>
<td>6.40%</td>
<td>2.90%</td>
<td>0.76%</td>
<td>0.24%</td>
<td>0.48%</td>
<td>0.58%</td>
<td>0.27%</td>
<td>0.30%</td>
<td>1.04%</td>
<td>1.14%</td>
</tr>
<tr>
<td>IV 1</td>
<td>7.42%</td>
<td>3.38%</td>
<td>1.39%</td>
<td>0.68%</td>
<td>0.55%</td>
<td>-0.29%</td>
<td>0.13%</td>
<td>1.77%</td>
<td>0.94%</td>
<td>0.98%</td>
</tr>
<tr>
<td>IV 1</td>
<td>9.42%</td>
<td>3.26%</td>
<td>1.06%</td>
<td>-0.31%</td>
<td>0.36%</td>
<td>-0.24%</td>
<td>0.59%</td>
<td>-1.05%</td>
<td>-1.54%</td>
<td>1.07%</td>
</tr>
<tr>
<td>IV 1</td>
<td>11.29%</td>
<td>2.87%</td>
<td>0.32%</td>
<td>0.90%</td>
<td>-0.44%</td>
<td>-1.00%</td>
<td>-2.11%</td>
<td>-3.41%</td>
<td>-3.15%</td>
<td>-4.14%</td>
</tr>
</tbody>
</table>

References